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Abstract

A brain network comprises a substantial amount of short-range connections with an admixture of long-range connections.
The portion of long-range connections in brain networks is observed to be quantitatively dissimilar across species. It is
hypothesized that the length of connections is constrained by the spatial embedding of brain networks, yet fundamental
principles that underlie the wiring length distribution remain unclear. By quantifying the structural diversity of a brain
network using Shannon’s entropy, here we show that the wiring length distribution across multiple species—including
Drosophila, mouse, macaque, human, and C. elegans—follows the maximum entropy principle (MAP) under the constraints of
limited wiring material and the spatial locations of brain areas or neurons. In addition, by considering stochastic axonal
growth, we propose a network formation process capable of reproducing wiring length distributions of the 5 species,
thereby implementing MAP in a biologically plausible manner. We further develop a generative model incorporating MAP,
and show that, for the 5 species, the generated network exhibits high similarity to the real network. Our work indicates that
the brain connectivity evolves to be structurally diversified by maximizing entropy to support efficient interareal
communication, providing a potential organizational principle of brain networks.
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Introduction
The dynamics of a brain network is substantially affected by its
comprehensive connectivity structure. For instance, it has been
shown that the functional connectivity recovered from resting-
state cortical dynamics largely overlaps with the structural con-
nectivity (Honey et al. 2007; Zhou et al. 2013). In addition, cor-
tical wave dynamics are often observed in the brain (Rubino
et al. 2006; Muller et al. 2018). Theoretical studies indicate that
these waves originate preferably from hub areas in the network
(Roberts et al. 2019), and the emergence of the waves is influ-
enced by the topology and connection distance of the network
(Jirsa and Haken 1996). The topological structure of the brain
network also highly correlates with specific brain functions
(Jbabdi et al. 2013). Consequently, pathological perturbations to
the brain structure will result in various brain disorders, as

reviewed in (Fornito et al. 2015). For instance, in contrast to
healthy controls, schizophrenia patients have an increased con-
nection distance in their anatomically connected multimodal
cortical network (Bassett et al. 2008). It is hypothesized that
childhood-onset schizophrenia is induced by the overpruning
of short-distance connections during the developmental stage
(Feinberg 1983).

To quantitatively characterize the structure of brain net-
works, tools from graph theory and network science have been
introduced into the neuroscience field (Bullmore and Sporns
2009; Bassett and Sporns 2017). Following the terminology of
network science, neurons or brain regions are often described as
nodes and the connections among them are described as edges.
Subsequently, network characteristics including node degree
distributions, clustering coefficients, shortest path lengths,
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assortativity, and modularity have been calculated based on
experimental measurements. It has been found that brain
networks exhibit features of complex networks with highly
connected hubs (Bullmore and Sporns 2012; van den Heuvel
et al. 2012) and modularity (Meunier et al. 2010; Bullmore and
Sporns 2012; Sporns and Betzel 2016). These network features
are believed to facilitate functional integration and segregation
of distinct brain regions (Young 1992; Hilgetag et al. 2000;
Hilgetag and Kaiser 2004). In addition, brain networks have been
identified with the small-world property characterized by small
shortest path lengths and high clustering coefficients (Watts
and Strogatz 1998; Bassett and Bullmore 2006; He et al. 2007),
which presumably optimizes the complexity of brain functions
meanwhile saving wiring costs (Bassett and Bullmore 2006).

In addition to the aforementioned rich topological features,
brain networks also possess the geometrical feature of spatial
embedding (Barthélemy 2018). This also imposes constraints on
the network structure (Ramon-y-Cajal et al. 1996; Stiso and Bas-
sett 2018). In fact, the network formation during brain develop-
ment is largely determined by the chemical gradients of growth
factors across space (Bayer and Altman 1987; Bullmore and
Sporns 2012). As a consequence, neurons with similar functions
tend to have more similar connection profiles than neurons with
less similar functions (French and Pavlidis 2011; Rubinov et al.
2015). In addition, because of space limitation, the number of
neurons as well as the length and cross-sectional diameter of
axonal projections in brain networks are substantially restricted
(Bullmore and Sporns 2012). Furthermore, the cost of estab-
lishing and maintaining axonal wiring connections increases
with the wiring length of interneuronal connections (Chklovskii
2004). Under these constraints, a large number of connections
in brain networks are observed to be local and short-distance
(Hellwig 2000; Stepanyants et al. 2007).

As a basic structural characteristic of brain networks, the
distribution of wiring length has been measured in recent exper-
iments. In general, the wiring length distribution is observed to
peak at a short-distance level with a long tail across multiple
species (Kaiser et al. 2009; Betzel and Bassett 2018). This fact
indicates that brain networks comprise a substantial amount
of short-range connections with an admixture of long-range
connections. The long-range connections increase the wiring
cost, and in return for this, they presumably bring important
functional benefits such as supporting efficient communication
(Laughlin and Sejnowski 2003) and facilitating functional diver-
sity (Betzel and Bassett 2018) in the brain. To further quantify the
portion of long-range connections, the shape of wiring length
distribution has been analyzed across species. In particular, the
wiring probability as a function of distance between neurons
in the neural network of C. elegans is found to be best fitted
by a power-law distribution, and that in the neuronal network
of rat visual cortex is found to be best fitted by a Gaussian
distribution (Kaiser et al. 2009). In the interarea network of
macaque, the dependence of wiring probability on distance has
been reported as gamma (Kaiser et al. 2009) and exponentially
distributed (Ercsey-Ravasz et al. 2013) in 2 independent stud-
ies, respectively. Using scaling theory, power-law distribution is
theoretically proved to be the optimal solution of wiring length
distribution under certain conditions (Karbowski 2001).

Based on experimental observations, computational models
have been developed to capture the distribution of wiring length.
In particular, generative models have been proposed to well fit
the wiring length distributions of macaque and human brain
networks, respectively (Ercsey-Ravasz et al. 2013; Song et al.

2014; Betzel et al. 2016). Yet these models often contain free
parameters to be determined by fitting the network statistics.
Accordingly, they are incapable of predicting the wiring length
distribution without tuning the optimal parameter sets, thus
impeding the understanding of the principle underlying the
emergence of the wiring length distribution. Alternatively, opti-
mization models suggest that the wiring length distribution of
the macaque brain network is optimally determined from the
tradeoff between wiring cost and functional efficiency (Chen
et al. 2017). However, in contrast to the definition of wiring cost
(Cherniak 1992; Chklovskii 2004), the definition of functional
efficiency so far remains to be ambiguous. For example, the
functional efficiency defined as the shortest path length or
others in the optimization models (Chen et al. 2017) is arguable
(Song et al. 2014; Betzel and Bassett 2018).

As a further step to understand the organizational principle
of brain networks, the following questions need to be addressed:
(1) What is the common feature of the wiring length distribution
across different species, if any? (2) Is there a fundamental princi-
ple underlying the emergence of the wiring length distribution
of a brain network? (3) How does the experimentally observed
wiring length distribution emerge during network formation?
(4) Are the experimentally observed wiring length distributions
optimally designed for any brain function?

In this work, by quantifying the structural diversity of a brain
network using the measure of Shannon’s entropy (Shannon
1948; Rubinov and Sporns 2011; Chen et al. 2017), we show
that the wiring length distribution across multiple species—
including Drosophila, mouse, macaque, human, and C. elegans—
follows the maximum entropy principle (MEP) under the con-
straints of (1) the spatial locations of brain areas or neurons and
(2) the limited material resource described by average wiring
length. This predictive framework is parameter free as all the
information required by the 2 constraints can be explicitly deter-
mined from experimental measurements. In addition, by con-
sidering the stochasticity of axonal growth (Kaiser et al. 2009;
Braitenberg and Schüz 2013), we propose a network formation
procedure which is capable of reproducing the wiring length
distribution for multiple species as observed in experiments,
thereby implementing the MEP in a biologically plausible man-
ner. To recover the detailed information of a brain network
connectivity, we further develop a generative model by incor-
porating the cost-constrained MEP. For all the 5 species, we
show that the network reconstructed by our generative model
is more similar to the real network compared with those recon-
structed by alternative generative models without accounting
for the wiring entropy, that is, the entropy of the wiring length
distribution of the network. Finally, we discuss the functional
implications of the MEP, and show the predictability of the MEP
for other transport networks beyond brain networks including
the real-world flight course network, road network, and subway
network etc.

Materials and Methods
Data Source

We analyze the brain network structure of Drosophila, mouse,
macaque, human, and C. elegans. Based on experiments, the con-
nections are measured among neurons for C. elegans, whereas
the connections are measured among brain areas for the other
species. In our analysis, we focus on the wiring length distribu-
tion of a network. Accordingly, we use the binary information
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of the network connectivity, that is, the information of whether
2 neurons or brain areas are connected or not, although the
networks per se are directed and weighted. The data we analyze
are obtained from the sites described below.

Drosophila

The network connectivity for Drosophila brain was reconstructed
based on the data in (Chiang et al. 2011), which is also avail-
able online in the FlyCircuit 1.2 database (http://www.flycircui
t.tw). Labeled with green fluorescent protein, single neurons
were imaged at high resolution, delineated from whole-brain 3D
images and coregistered to a Drosophila female adult template
brain. The mesoscopic map was partitioned into 49 local pro-
cessing units (LPU) with distinct morphological and functional
characteristics. LPUs were defined so as to contain their own
population of local interneurons whose fibers were limited to
that specific LPU. We focus our analysis on the 2106 connections
among the 49 LPUs.

Mouse

The network connectivity for mouse brain was reconstructed
based on tract-tracing data in (Oh et al. 2014), which is also
available on the Allen Institute Mouse Brain Connectivity
Atlas (http://connectivity.brain-map.org). To build the database,
axonal projections of neurons were traced with enhanced green
fluorescent protein-expressing adeno-associated viral vectors
and imaged by high-throughput serial 2-photon tomography
throughout the brain. The viral tracer projection patterns
were reconstructed and registered to a common 3D reference
space. Network areas were defined according to a custom
parcellation based on the Allen Developing Mouse Brain Atlas.
This parcellation contains 65 areas in each hemisphere, 9 of
which were removed because they were not involved in any
tract-tracing experiment. The resulting network contains 112
areas and 6542 connections.

Macaque

The network connectivity for macaque brain was reconstructed
based on the online CoCoMac database (http://cocomac.g-no
de.org/main/index.php). The database covers connectivity data
across literatures on tract-tracing experiments in macaque brain
(Goldman-Rakic and Rakic 1991; Carmichael and Price 1994;
Lewis and Essen 2000; Kötter 2004). Later analysis of the database
provides a direct repository of spatial positions of 95 cortical
areas and 2390 connections among areas, which are available
on https://www.dynamic-connectome.org (Kaiser and Hilgetag
2006). Recently, the database has been further expanded to
include 103 cortical areas and 2518 connections using a more
detailed parcellation of the motor regions (Chen et al. 2013; Chen
et al. 2017), which will be analyzed in our work.

Human

The human brain network we analyze is from (Betzel and Bassett
2018), which includes 128 cortical areas and 4736 connections. It
was reconstructed from diffusion weighted magnetic resonance
imaging, based on deterministic tractography algorithms. The
data represent the composites of 30 human subjects.

C. elegans

The network connectivity for C. elegans was reconstructed from 2
online databases (https://www.wormatlas.org and https://www.
dynamic-connectome.org). Both databases were based on the
electron micrographs published in (White et al. 1986) and were
updated with newly identified synapses. The first database was
provided and analyzed in (Chen et al. 2006; Chen 2007; varshney
et al. 2011), which incorporated additional synapses identified
from other works (Durbin 1987; Hall and Russell 1991; Achacoso
and Yamamoto 1992). The database includes 280 neurons, 6393
chemical synapses, 890 electrical junctions, and 1410 neuromus-
cular junctions. The chemical and electrical synapses are both
considered as connections in our analysis. The second database
was published in (Choe et al. 2004; Kaiser and Hilgetag 2006),
which includes 277 neurons and 2105 synapses. The connectiv-
ity of neurons from these 2 databases do not fully overlap with
each other. In our analysis, we use the intersection of neuron
sets and the union of synapse sets in the 2 databases, which
yields 277 neurons and 4758 connections for analysis. This net-
work is referred to as the C. elegans global network. In addition,
we reconstruct a C. elegans local network composed of neurons
in the frontal area of the global network, which includes 169
neurons and 1331 connections. We use the information of the
spatial positions of neurons provided by the second database.
The spatial layout of the global and local networks is shown in
Supplementary Figure S1.

Results
MEP Predicts the Wiring Length Distribution

The brain network in general consists of both short-range and
long-range connections. It is evident that short-range connec-
tions require less material therefore substantially save the mate-
rial cost. In contrast, long-range connections utilize more mate-
rial and presumably benefit certain brain functions. However,
the functional role of long-range connections remains to be fully
elucidated, which impedes one to understand the spatial orga-
nizational principle of the brain network. Here we investigate
the organizational principle from a different perspective. Rather
than exploring the functional benefits of network structure, we
investigate the question of whether there exists any universal
structural characteristic that brain networks evolve to possess,
as all functional benefits are supported by network structure.
We are particularly interested in the wiring length distribution
of brain networks, which reveals the portion of short-range
and long-range connections that the brain invests resource to
establish.

To address this question, we first analyze brain networks of
4 species—Drosophila, mouse, macaque, and human. The con-
nections in these 4 networks are measured among brain areas
(see Materials and Methods section for details). In addition, the
wiring length d between 2 brain areas is measured by using the
Euclidian distance (Betzel and Bassett 2018), and all the wiring
lengths are partitioned into even bins [di, .di+1), i = 1, 2, . . . , k. to
calculate the wiring length frequency distribution pi = P(d ∈
[di, .di+1)). As shown in Fig. 1 and Supplementary Figure S2, the
shapes of these distributions are dissimilar using either the
same bin number or the same bin size. For example, the wiring
length distribution for macaque is heavily skewed, whereas
that for human is nearly symmetric. For the purpose of result
demonstration, the number of bins is set to be k = 30 in Fig. 1 for
processing data obtained from different species, yet the results

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab110/6276649 by guest on 18 M

ay 2021

http://www.flycircuit.tw
http://www.flycircuit.tw
connectivity.brain-map.org
http://cocomac.g-node.org/main/index.php
http://cocomac.g-node.org/main/index.php
https://www.dynamic-connectome.org
https://www.wormatlas.org
https://www.dynamic-connectome.org
https://www.dynamic-connectome.org
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab110#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab110#supplementary-data


4 Cerebral Cortex, 2021, Vol. 00, No. 00

Figure 1. Wiring length distributions of brain networks across multiple species and their predictions by the maximum entropy principle. (A)–(D) are for brain networks
of Drosophila, mouse, macaque, human, respectively. (E) and (F) are for the global and local neural networks of C. elagans, respectively. The insets of (E) and (F) are

zooming in. In each panel, dark gray bars are the wiring length distribution measured from experiments. Light gray bars are the upper bound of the wiring length
distribution given by the reference distribution defined in the main text. Red solid line is the wiring length distribution predicted by the maximum entropy principle
(Eqs. 1–4). R2 is calculated to evaluate the performance of the prediction. (A)–(F) share the same legend.

shown below are insensitive to the choice of bin number in
a reasonable range (Supplementary Fig. S3). The dissimilarity
among the wiring length distributions for different species is
caused by at least 2 factors, that is, the locations of brain areas
as the spatial constraint, and the total wiring length as the
constraint of material cost.

To demonstrate the spatial constraint on a brain network,
we first define the reference distribution as N

M qi, where M is
the number of connections in the real brain network, N is the
number of connections in a corresponding fully connected brain

network consisting of the same brain areas as the real brain
network, and qi is the wiring length distribution of the fully
connected brain network. Note that the reference distribution is
not necessarily a probability distribution because

∑
i

N
M ·qi = N

M �=
1unless M = N, yet the reference distribution gives the upper
bound of pi. As shown in Fig. 1, the wiring length distribution pi is
always under the reference distribution for all networks, that is,
pi ≤ N

M ·qi. This is due to the fact that the number of connections
with wiring length falling into the bin [di, .di+1), shall be no larger
than the number of all available connections with wiring length
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falling into the same bin, that is, pi · M ≤ qi · N. Note that qi—
defined as the wiring length distribution of the fully connected
brain network—is determined by the spatial locations of the
brain areas, hence pi is spatially constrained.

In addition, for all the 4 networks, we note that the rising
part of the wiring length distribution pi nearly overlaps with the
rising part of the reference distribution. Their overlap indicates
that the brain network exploits almost all the short-range con-
nections that are available to form. This observation supports
the hypothesis that the brain network tends to form short-
range connections in order to save material cost. Furthermore,
as shown in Fig. 1, for all the 4 networks, the decay part of the
wiring length distribution pi exhibits a substantial difference
from their reference distribution. This observation suggests that
the brain network chooses to form only a small portion of long-
range connections instead of all of the available ones, which
presumably results from the constraint of wiring resource.

Note that the constraints of spatial locations and material
cost are not sufficient to determine the wiring length distri-
bution. In fact, under the 2 constraints, it remains feasible
for the brain network to form additional long-range connec-
tions in compensation for removing short-range connections
while keeping the total material cost unchanged, and vice versa.
Therefore, revealing the principle underlying the wiring length
distribution is still an open question. It is hypothesized that
the network structure is optimized for information processing
functionally. However, the definition of functional efficiency
of the brain remains ambiguous as mentioned previously. By
focusing the network structure per se, here we hypothesize that
the network structure is optimally diversified, and the MEP is an
underlying rule to determine the network structure as discussed
below.

Driven by this hypothesis, we first introduce the measure
of Shannon’s entropy to quantify the diversity of the network
structure. The wiring entropy of a network is defined as H =
−∑k

i=1pi log(pi), and is calculated for the 4 brain networks. As a
reference, we estimate the upper and lower bounds of the wiring
entropy that each brain network can achieve in the absence of
any constraint. In principle, the upper bound of wiring entropy
shall be obtained by exhaustively searching for all possible
network configurations, that is, keeping network nodes the
same as those in a given brain network meanwhile rewiring
network edges in all possible ways, which is not feasible due to
the extremely high computational cost. Alternatively, for each
brain network, we construct an ensemble of 100 random net-
works by randomly connecting each pair of brain areas until the
total number of connections reaches that of the original brain
network. The largest entropy value of these random networks
well approximates the upper bound of the brain wiring entropy
(Supplementary Fig. S4). In addition, for each brain network,
we construct a network by successively connecting the pair of
brain areas with the smallest length until the total number
of connections reaches that of the original brain network. The
entropy value of this network approximates the lower bound
of the brain wiring entropy. Subsequently, we find that all the
4 brain networks possess large wiring entropy close to the
upper bound whereas the wiring entropy is substantially larger
than the lower bound, as shown in Fig. 2. The large entropy
of these brain networks across different species attributes to
their broad wiring length distribution as an indicator of the
structural diversity of these networks. On the other hand, as
shown in Supplementary Figure S5, the material cost of these
brain networks in most cases is significantly lower than that of

Figure 2. Wiring entropy of the 6 brain networks. Red bars correspond to the
wiring entropy of Drosophila, mouse, macaque, human, the global and local
networks of C. elegans. Blue and yellow bars are their upper and lower bounds,

respectively. See text for the calculation of the upper bound and lower bound of
wiring entropy.

the random networks, indicating that these brain networks are
not fully random, and there is a trade-off balance between mini-
mizing the material cost and maximizing the wiring entropy for
the connectivity structure of real brain networks.

Based on the above analysis of the wiring entropy, we next
investigate the question of whether entropy maximization is
sufficient to determine the wiring length distribution in addition
to the constraints of spatial locations and material cost. We find
that the wiring length distribution of all the 4 brain networks can
be well predicted by the solution of the following optimization
problem.

maximize −
k∑

i=1

pi log
(
pi

)
(1)

subject to
k∑

i=1

pi = 1 (2)

k∑

i=1

pi · di ≤ d (3)

pi ≤ N
M

qi for i = 1, 2, . . . , k (4)

where Eq. 2 (normalization constraint) is the normalization
condition for frequency pi; Eq. 3 (material constraint) requires
the average wiring length to be no larger than d̄, which is
measured as the average material cost in the brain network of
each species; Eq. 4 (spatial constraint) requires that the number
of connections with wiring length in the range [di, di+1)cannot
exceed the number of all available connections with wiring
length in the same range. This optimization problem (Eqs. 1–4)
is referred to as the MEP model. It is noticed that the MEP model
is parameter free.

We use CVX Matlab software (Grant and Boyd 2008, 2014) as
a convex optimization problem solver to find the global optimal
solution of the MEP model for each of the 4 brain networks, that
is, Drosophila, mouse, macaque, and human brain. As shown in
Fig. 1A–D, the optimal solutions well overlap with the experi-
mentally observed wiring length distributions for all the 4 brain
networks. Further, R2 is calculated to quantify the performance
of the predictions—R2 = 0.99 for Drosophila network, R2 = 0.93 for
mouse network, R2 = 0.80 for macaque network, and R2= 0.94 for
human network.
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In addition to analyzing the 4 brain networks with connec-
tions measured among brain regions, we have also analyzed the
C. elegans network in which connections are measured between
neurons. Fig. 2 shows that the wiring entropy of C. elegans also
approaches to its upper bound while is substantially larger than
its lower bound. In addition, as shown in Fig. 1E, the prediction
of the wiring length distribution from the MEP fits the observed
distribution moderately well with R2 = 0.48. However, the perfor-
mance of the prediction can be substantially improved in Fig. 1F
with R2= 0.91 if considering a local network located in the frontal
area of the C. elegans. It is speculated that the moderate predic-
tion performance of the C. elegans global network may attribute
to the fact that the alignment of neurons in the global network is
approximately 1D as shown in Supplementary Figure S1, which
may weaken the predictive power of the MEP.

We point out that the constraint of material cost in the MEP
model is set to be no greater than a constant d̄ measured from
experiment, which allows a network to use less material than
the real one measured in experiment. This constraint together
with the other 2 constraints create a large feasible region of the
MEP model, that is, there are a large number of possible solutions
that satisfy the constraints. However, the objective function of
entropy maximization picks out only 1 solution that turns out to
be consistent with the wiring length distribution observed in the
real brain network, indicating that entropy maximization may
be a potential principle of brain network organization.

Biological Implementation of the MEP

The MEP model provides a principle of the wiring distribution of
brain networks, yet it remains unclear on the biological imple-
mentation underlying this principle during the stage of network
wiring formation. Theoretical and experimental works have
shown that many factors are involved in the determination of
the network structure including spatial distance, molecular gra-
dients (Bayer and Altman 1987; Bullmore and Sporns 2012), neu-
rogenesis (Picco et al. 2018; Goulas et al. 2019), developmental
time window (Goulas et al. 2019), cortical expansion (Beul et al.
2018), stochastic axon growth (Binzegger et al. 2004; Kaiser et al.
2009) etc. Under the tight constraints of these factors, the brain
network connectivity is largely determined. However, it remains
interesting to address the issue that, among all these factors,
what the essential subset of factors are, if any, to determine the
wiring length distribution observed in experiments. As wiring
entropy in the MEP model depicts the randomness of network
structure, here we investigate if random axon growth during
network development is sufficient to give rise to the observed
wiring length distribution, with a few constraints derived from
real brain network.

Fig. 3A–D illustrates a process of network formation by
stochastic axonal growth, which is referred to as the random
growth model below. In this process, the locations of all brain
areas are embedded in the geometric space, and the distance
between each pair of brain areas is set to be identical to
that measured in experiment. Initially all brain areas are
disconnected. A bunch of axons from each area start to grow
out with a constant speed toward random directions in the
3D space. The growth of an axon from one area terminates
with certain probability once the axon reaches the vicinity of
another area if the number of connections to the target area
is not saturated yet (the saturation condition of connections
will be discussed below). After sufficiently long simulation time,
axons that fail to connect 2 areas will be pruned. To avoid the

emergence of super rich hubs with unrealistically large number
of degrees, each area is set to have a limited number of axons
it can receive. In our simulations, the limited capacity for each
area is set to equal the actual connection degree of the area. In
addition, the radius of the “touching sphere” for each area is set
to be identical, and this parameter is optimally chosen such that
the total number of connections approximately equals that of
the real brain network. Additional stochasticity is introduced by
setting a failure probability of connection formation when an
axon reaches the “touching sphere” of an area. If the failure of
connection formation happens, the axon will continue to grow
toward distal area, which increases the chance of forming long-
range connections. The values of these biological parameters,
including the number of outgrowing axons per area, the speed
of axonal growth, the radius of the “touching sphere”, and the
failure probability of forming a new connection are listed in
Supplementary Table S1. As shown in Fig. 3E–J, the random
growth model well reproduces the wiring length distribution
for all the brain networks across the 5 species, although the
reproducing of the wiring length distribution for the C. elegans
global network is not as good as that in other cases. The
random growth model does not consider the maximization of
wiring entropy as a priori, while it reproduces the wiring length
distribution of the brain networks as an emergent phenomenon
previously predicted by the MEP model. This result indicates
that stochastic axonal growth may serve as a crucial factor that
implements the MEP.

It is worth pointing out that, without accounting for other
important factors related to network formation, this network
growth model does not reflect the real network formation pro-
cess, and the resultant network becomes stochastic rather than
deterministic. Hence the detailed structure of the resultant net-
work can be different from the true one. However, the true
network can be viewed as a particular realization of the net-
work ensembles generated by the network growth model, which
will be uniquely determined by taking into account additional
factors.

MEP Contributes to Network Connectivity and Various
Statistical Properties

We further address the question of whether the principle of
maximum entropy contributes to additional properties of net-
work structure besides the wiring length distribution, such as
network connectivity, clustering coefficient, and modular struc-
ture.

The MEP model (Eqs. 1–4) suggests that the structure of
the brain network results from the balance between the
minimization of material cost and the maximization of wiring
entropy when the network is embedded in the geometrical
space. According to this, we propose a generative model with
the MEP (Eqs. 1–4) incorporated, which allows one to recover
the detailed connectivity of the brain network. In the model,
the spatial locations and the connectivity degrees of brain
areas are given from the real brain network we attempt to
reconstruct, and the material cost is calculated proportional
to the Euclidian distance between each pair of brain areas. To
recover the network connectivity and statistics, we initialize
the network by disconnecting all the areas, that is, there is no
connection in the initial network thus each area has a 0 degree
of connection. We then create a candidate list to include all the
areas whose current degree is less than the target degree given
by the degree sequence measured from experiments. Initially,

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab110/6276649 by guest on 18 M

ay 2021

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab110#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab110#supplementary-data


MEP Underlies Wiring Length Distribution Song et al. 7

Figure 3. Random growth model reproduces the wiring length distributions of brain networks across multiple species. (A)–(D) Schematic illustration of the random

growth process. (A) The initial state of a network with all brain areas disconnected. Each brain area is indicated as a dot in the 3D space with its coordinates measured
from the experiments. Blue spheres are the “touching sphere” of each brain area. (B) The random growth stage. A bunch of axons (dash blue lines) from each brain area
start to grow out with a constant speed toward random directions. (C) The connection formation stage. Connections are formed (orange lines) with a certain probability
when growing axons (dash blue lines) fall into the touching sphere of another brain area that has not been fully occupied yet. (D) The pruning stage. Networks are

formed by finally pruning axons that fail to connect 2 brain areas. (E)–(J) The wiring length distributions of the brain networks for Drosophila, mouse, macaque, human,
the global and local networks of C. elagans, respectively. The gray bars are from experimental measurement, and the red curves are from the simulations of stochastic
axonal growth.

all the areas’ ID is in the candidate list because there is no
connection in the network. We next introduce an objective
function F = H − λd to determine whether a selected pair of
brain areas at each step should be connected or not, where
H is the wiring entropy, d is the material cost or the average
wiring length of the current network, and λ is a parameter
that scales the relative contribution between wiring entropy
and material cost. In each step of connection generation, we
utilize the greedy searching strategy: (1) For each area Vi in

the candidate list, hypothetically connect it to another area
Vj in the candidate list whose current degree has the largest
difference from its target degree. (2) For each pair of Vi and Vj,
compute the objective function F after adding the hypothetical
connection between Vi and Vj. (3) Select the pair of Vi and
Vj to connect which corresponds to the largest F. (4) Update
the degree of Vi and Vj from Ki and Kj to Ki + 1 and Kj + 1,
and update the candidate list by removing Vi or Vj if Ki or Kj

reaches the real degree value of area Vi or Vj as observed in

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab110/6276649 by guest on 18 M

ay 2021



8 Cerebral Cortex, 2021, Vol. 00, No. 00

Figure 4. Performance of the generative models on the prediction of network structural properties for the 5 species. (A) Recovery error. (B) The distance between the
wiring length distribution measured in experiment and that recovered by the generative models quantified by the Kolmogorov–Smirnov statistic. (C) and (D) are the
absolute values of the relative error of the recovered real network’s clustering coefficient and modularity factors, respectively. (A)–(D) share the same legend shown in
(A). The values of λ in the generative models are chosen as 113 for C. elegans global network, 339 for C. elegans local network, 121 for Drosophila network, 7.91 for mouse

network, 0.187 for macaque network, and 0.494 for human network (in the unit of mm−1), based on the optimal performance of network connectivity reconstruction
of the generative models.

experiment. (5) Repeat the above steps until the candidate list
becomes empty. We refer this model to as the entropy-cost-
degree (ECD) model. The ECD model provides more information
than the MEP model (Eqs. 1–4), that is, the additional information
of network connectivity thereafter statistical properties beyond
the wiring length distribution. Therefore, the ECD model allows
us to investigate the role of the MEP in determining network
structure and property.

Note that, in addition to incorporating the MEP, the ECD
model also incorporates the extra information of connectivity
degree of brain areas (or neurons in the C. elegans network), that
is, the connectivity degree shall be identical to that measured
in the real brain network. To substantiate the unique role of
the MEP on the determination of network structure, we further
develop 2 alternative generative models for comparison. In the
first model, in each step of connection generation, we randomly
connect a pair of areas only under the constraint of degree
sequence rather than optimizing F. The reconstructed network
by this model has the same degree sequence as the real brain
network. The model is referred to as the degree-constrained
model. The degree-constrained model removes the influence
of the MEP on network structure while only accounts for the
contribution of degree information to the determination of
network structure. Accordingly, the improved performance from
the degree-constrained model to the ECD model attributes to
the MEP. In addition, we propose a second generative model

that further removes the information of degree sequence. In
this model, a pair of brain areas is randomly chosen to be
connected at each step until the total number of connections
equal that in the real brain network. This model is referred
to as the degree-free model. Accordingly, the improved perfor-
mance from the degree-free model to the degree-constrained
model attributes to the additional information of degree
sequence.

We first assess the performance of the generative models
on the recovery of the network connectivity, which is evaluated
by the recovery rate rrec defined as the ratio of the number of
successfully recovered connections by a generative model to
the total number of existing connections in the real network,
and the recovery error as 1 − rrec. As shown in Fig. 4A, for the
brain networks of Drosophila, mouse, macaque, and human, the
recovery error of the ECD model is below 35%. In contrast, for the
global and local networks of C. elegans, the recovery error of the
ECD model is as large as about 80%. The large recovery error of
the network connectivity for C. elegans results from the sparsity
of the network connections. In the sparse network of C. elegans,
all the existing connections with a fixed length are only a small
portion of the total available connections with identical length.
Therefore, there exists a large number of network configurations
that share similar entropy and cost to the real C. elegans net-
work, which gives rise to the large recovery error. Fig. 4A shows
that the recovered connectivity by the ECD model for all the
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MEP Underlies Wiring Length Distribution Song et al. 9

5 species is consistently and significantly more accurate than
that of the degree-free model. This result indicates that network
connectivity recovered by the ECD model cannot be achieved by
random guess. Therefore, the MEP as well as degree sequence
constraint plays important roles in the recovery of the network
connectivity. To demonstrate the relative contribution of the
MEP and the constraint of degree sequence in the ECD model
to the recovery of network connectivity, the performance of the
ECD model is compared with the degree-constrained model. It
is noted that the recovery error increases once the maximum
entropy condition is removed, indicating that the MEP plays a
unique role in determining network structure. The increase of
recovery error from the ECD model to the degree-constrained
model is about 6.98% ± 4.76% (mean ± standard deviation for 6
networks across 5 species). In addition, the recovery error further
increases from the degree-constrained model to the degree-free
model by 8.02% ± 5.89% in a consistent way for all the 5 species,
demonstrating that degree sequence is also informative for the
reconstruction of network connectivity.

We further show that maximizing wiring entropy in the
ECD model also improves the recovery of network statistical
properties including wiring length distribution, clustering coef-
ficient, and modularity factor. We first investigate the perfor-
mance of the generative models on recovering wiring length
distribution evaluated by the Kolmogorov–Smirnov(K–S) statis-
tics (Kolmogorov 1933; Smirnov 1948). By its definition, given
a measured wiring length distribution and its prediction from
one of the generative models, the smaller the K–S statistic value
is, the closer the predicted wiring length distribution is to the
measured distribution. Therefore, a smaller value of the K–S
statistic indicates a better prediction from a generative model.
As shown in Fig. 4B, among the 3 generative models, the ECD
model best predicts the wiring length distribution of the brain
networks for all the 5 species, and the performance drops by
removing the constraint of the MEP (i.e., the degree-constrained
model), consistent with the previous result that the MEP (Eqs. 1–
4) well predicts the wiring length distributions. Similar hierarchy
of model performance on the recovery of clustering coefficient
(Watts and Strogatz 1998) and modularity factor (Newman 2006)
of the brain networks are shown in Fig. 4C and D, respectively.
The ECD model that accounts for wiring entropy always out-
performs the other 2 generative models without considering
wiring entropy, particularly for the recovery of network modular
structure. The successful recovery of the feature of network
modularity by the ECD model is further demonstrated in Fig. 5,
which clearly shows the effectiveness of the ECD model in
contrast to the degree-constrained model and the degree-free
model.

Discussion
In this work, we have shown that the wiring length distributions
of brain networks across multiple species—including Drosophila,
mouse, macaque, human, and C. elegans—share the feature
of large wiring entropy. These distributions have been well
predicted by maximizing the entropy of wiring length under
the constraints of limited wiring material and the spatial
locations of neurons or brain areas. Mathematically equivalent,
the connectivity of brain networks is largely determined by
the trade-off balance between maximizing wiring entropy and
minimizing wiring cost. In addition, we have proposed a process
of random axonal growth to reproduce wiring length distribu-
tions for the 5 species as measured in experiments, thereby

implementing the MEP in a biologically plausible manner. We
have further developed a generative model incorporating the
MEP, that is, the ECD model. We have shown that the ECD model
significantly improves the recovery rate and other network
statistics compared with alternative models without accounting
for entropy, confirming that entropy maximization involves in
determining the structure of brain networks. Our work implies
that the connectivity in brain networks evolves to be structurally
diversified to support its complex functions.

Network functions in general are realized by its dynamics,
which can be substantially influenced by network structure
(Honey et al. 2010). In this work, we focus on the network
structure per se and ask the question of what structural features
the brain network optimally evolves to possess under certain
constraints. This distinguishes our work from previous works
attempting to understand network structure from the viewpoint
of functional benefits that in general are not well defined yet
(Linsker 1988; Laughlin and Sejnowski 2003; Antonopoulos
et al. 2015; Toker and Sommer 2019). In addition, our work
identifies a concise yet effective principle of maximum entropy
that may underly the wiring length distribution of networks
both at the macroscale areal level and at the microscale
neuronal level across multiple species from invertebrate to
vertebrate. Without introducing extra tuning parameters, the
accurate prediction of the wiring length distribution (with
R2 > 0.9 for most cases) indicates the universality of the MEP.
Furthermore, our work investigates the structure of brain net-
works from multiple comprehensive angles—from theoretical
principle to biological implementation and to phenomeno-
logical generative model. All these aspects are unified by the
principle of maximum entropy, hence systematically estab-
lishes the relation between different theoretical approaches
toward understanding network structure. This framework is
expected to be generalizable by incorporating more biological
constraints into it.

Previous works suggest that one of the functional benefits of
brain information processing can be evaluated by the average
shortest path (ASP) of the network (Watts and Strogatz 1998),
which reflects the communication speed as the time it takes
a neuronal signal to transmit from one area to another area
on average (Bullmore and Sporns 2012). As demonstrated in
Supplementary Figure S6, in an idealized brain network with a
ring structure, we have shown using theoretical analysis that
large wiring entropy or structural diversity corresponds to small
ASP. In addition, we have examined the data of the real brain
networks to investigate the relation between wiring entropy and
ASP. It is noticed that the real brain network deviates from the
idealized brain network in that the layout of the brain areas
or neurons are not spatially uniform. Therefore, for each brain
network of the 5 species, we first construct a corresponding
approximately “spatially-regular” network by having each area
connecting with a fixed number of spatially nearest neighboring
areas. The number of connections is approximately identical
for each area and is determined by the way such that the
total number of connections in the spatially-regular network is
the same as the real brain network. Because most connection
lengths are short, the wiring length distribution of this network
is narrowly peaked. Accordingly, the wiring entropy is small.
We label the false positive (FP) connections and false negative
(FN) connections in the spatially-regular network by comparing
it with the real network. We then correct these connections
step by step. In each step, we remove a pair of connection
from the FP pool and add a pair of connection from the FN
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Figure 5. Reconstruction of network connectivity from the generative models. (A) Drosophila network. (B) Mouse network. (C) Macaque network. (D) Human network. (E)
Global network of C. elegans. (F) Local network of C. elegans. In each panel, the connectivity matrices recovered from the ECD model, the degree-constrained model, and
the degree-free model are compared with the connectivity matrix of the real brain network. The ECD model well recovers the modular structure of the real network,
whereas other models fail to recover it.

pool. Both pairs of connections are selected to have the shortest
length in their pools respectively. Entropy and ASP are calculated
throughout the correction steps. After a finite number of steps,
the network will be corrected to the real network. As shown in
Fig. 6, except for Drosophila and mouse, all the brain networks
show the strong negative correlation between wiring entropy

and ASP—the entropy increases whereas the ASP decreases
as the correction continues, suggesting that the maximization
of wiring entropy benefits communication efficiency in these
networks.

In contrast, for the Drosophila and mouse networks, as they
evolve from spatially-regular to the real one, wiring entropy
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Figure 6. Negative correlation between wiring entropy and ASP for brain networks of the 5 species. (A) Drosophila network. (B) Mouse network. (C) Macaque network.

(D) Human network. (E) Global network of C. elegans. (F) Local network of C. elegans. The black curve in (E) is cut at the correction step about 1700 when the network
becomes disconnected.

increases whereas the ASP remains constant. The insensitivity
of the ASP to network connectivity results from the fact that the
2 networks are densely connected, thus the ASP is small and
does not change much during correction steps in the presence
of a large amount of connections. The 2 exception cases of the
Drosophila and mouse networks indicate that the maximization
of wiring entropy can be a more general principle than the
minimization of ASP under the constraint of limited material
resource. As shown in Fig. 6, for brain networks of Drosophila and
mouse, the optimal network structure with minimal ASP and
material cost shall be the spatially-regular network rather than
the real network. In addition, for the human brain network, the
optimal network structure exists in the middle of the correction
step, which is also different from the real network. In these net-
works, the maximization of entropy may have other functional
implications, for instance, enhancing functional diversity (Betzel
and Bassett 2018) or robustness (Demetrius and Manke 2005) of
the network. The diverse wiring length distribution may also
provide a broad spectrum of conduction delays of action poten-
tial and support a rich pool of neural dynamics, which echoes the
previous theoretical studies about the temporal coding of spikes
in the neural network (Izhikevich 2006). All these speculations
require future investigations.

It is undeniable that, during the developmental stage of each
individual organism, the formation of the macroscale structure
of brain networks is largely determined by genetic factors rather
than being random, which has been studied in many previ-
ous works (Bullmore and Sporns 2012; Beul et al. 2018; Picco
et al. 2018; Goulas et al. 2019). Accordingly, the variability of
macroscale brain connectivity across individuals is relatively
small. Therefore, the random growth process we proposed does
not fully reflect the real network formation process. However,
the true network can be viewed as a particular realization in

the network ensembles, which will be uniquely determined by
taking into account more biological factors such as molecular
gradients, neurogenesis, cortical expansion etc. In addition, the
random growth model may play a crucial role during the forma-
tion of the microscale structure of neuronal networks in which
randomness is strongly involved.

Although the main focus of this work is on brain networks,
the MEP can be applied to other transport networks beyond brain
networks. To demonstrate this, we have examined the networks
of real-world subway, flight course, and road from different
countries and countries. As shown in Supplementary Table S2,
under the constraints of limited wiring material and the spatial
locations of nodes, the wiring length distributions of these net-
works can also be well predicted by the MEP model. The diversity
of network structures is supposed to benefit the efficiency of
traffic transport in these networks.

In our work, we have also confirmed that material cost has
a crucial impact on network structure (Bullmore and Sporns
2012). This is demonstrated in the objective function in the
ECD model F = H—λ d̄, where H is the wiring entropy and d̄ is
the average wiring length. The parameter λ scales the relative
importance between the 2 quantities, and the optimal value
of λ that leads to the most accurate network reconstruction
is significantly nonzero in general, indicating the importance
of the material cost in determining network connectivity. If
we view λ as the cost per unit length, as the cost increases,
network structure will change accordingly. For instance, as
shown in Supplementary Figure S7, the networks reconstructed
under various λ have distinct clustering coefficients. The
larger the λ is, the more expensive the material cost is. In
Supplementary Figure S7, the clustering coefficient has an over-
all increase under larger material cost with exception at certain
λ value. Interestingly, by aligning the best-performance λ value
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with the experimentally identified network clustering coeffi-
cient, we find that the peaks of the clustering coefficient value
across species lie around the best reach of our generative model.

Many algorithms have been proposed for reconstructing neu-
ral networks and have achieved good performances (Betzel et al.
2016; Chen et al. 2017). Yet it remains challenging to fully recover
the connectivity of a brain network. One challenge lies in the
huge space of network configurations. In general, the recon-
struction algorithms start with neurons or areas being dis-
connected. Connections are added gradually based on certain
optimization rules. For a network of N nodes, the potential
network configurations can be as many as N!, which is about
10164 for the macaque cortical network. Therefore, exhaustive
searching is impossible to be realized. The ECD model partially
solves the problem by achieving an accuracy of recovery rate
68% in macaque cortical network, which is comparable with
earlier algorithms (Betzel et al. 2016; Chen et al. 2017). Another
challenge lies in the identification of factors that determine net-
work structure. The structure of brain networks is determined by
various factors, for instance, spatial geometry, gene expression,
chemical gradients of growth factors, randomness of axonal
growth, energy consumption, and material cost. Here we have
shown that the network statistics of wiring length distribution
is largely determined by the spatial constraint and material cost
constraint when maximizing wiring entropy and realized by
random axonal growth. However, these factors are insufficient
to accurately recover detailed network connectivity, as demon-
strated by the performance of the ECD model. Therefore, to
incorporate more factors in the generative model can be a future
direction to understand network connectivity. For instance, the
ECD model can be further modified by taking into account the
direction and weight of connections in the future study.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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